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APICAL VORTICES AND TRUMPET-SHAPED VORTEX SHEETS

By Maurice Roy

ABSTRACT

The general problem of flow phenomena on thin delta wings is dis-
cussed, with the purpose of establishing the experimental background for
development of a suitable theory. ©Some general equations for the trumpet-
shaped vortex sheet are developed, but no solutions are attempted. A
simplified approach, representing the trumpet-shaped sheet with a con-
tinuous distribution of vorticity and with sources and sinks in the flow
is suggested. Attempts at calculation of the flow using the simplified
approach are currently in progress.
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NATIONAL AERONAUTICS AND SPACE ATMINISTRATION

APICAL VORTICES AND TRUMPET-SHAPED VORTEX SHEETS®

By Maurice Roy

INTRODUCTION

For some time past numerous papers have appeared with the aim of
establishing, for the delta wing and wing with large sweepback, a simpli-
fied theory that would be in harmony with the increasingly known features
of the flow of the air around wings of this kind.

It is essentially with the general outline, or scheme of this flow,
with a view toward employing it as a basis for a theory, that I shall
here concern myself.

Since the observation of phenomena must necessarily precede the
elaboration of their theory, I have for the past six years at least given
great importance to investigations on the visualizations of flows. By
this method and thanks especially to efforts and the ability of Werle,
who among others has applied the technique of milk filaments, white or
colored, the hydrodynamic tunnel built at Chatillon according to my con-
ception has been intensively utilized and has furnished valuable cross-
checking of other tests conducted in the wind tunnel and accompanied by
visualization through smokes, liquid coatings, and wool filaments.

In the hydrodynamic tunnel in particular it has been possible to
enter more deeply into details that otherwise escape observation, and
Werle has already presented twice in La Recherche Aéronautique results
of various studies of this kind (ref. 1).

I underline the fact here that it is by no means unknown that in
these studies there is considerable divergence between the Reynolds
numbers realized in these wind tunnel tests and those relative to a real
airplane wing, even if the latter flies only at velocities where the com-
pressibility of the air is legitimately neglected. But, the necessary
changes having been made, these tests furnish qualitative information on
these phenomena which, with some humor, might be called as "illuminating"
as the intensely bright colored filaments, in the tests under
consideration.

lrgur 1a théorie de 1'aile en delta - Tourbillons d'apex et nappes
en cornet." ILa Recherche Afro., No. 56, Feb. 1957, pp. 3-12.
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SCHEME OF THE CONTINUOUS POTENTIAL

The delta wing here considered consists of an angular plane infinite
sector, of vertex angle = - 2¢, ¢ being the sweepback angle.

With respect to the x,y,z-axes attached to the wing (fig. 1), the
x-axis being the longitudinal axis of the wing oriented downstream, the
flow is assumed steady and of velocity at infinity VO under angle of
attack o and without side slip. The fluid is assumed incompressible
and perfect.

The components u,v,w of the relative motion are put in the nondi-
mensional form

|

'—J
+
]

u/VO cos a =

v/Vy cos a = X r (1)

w/Vgcosa=1

We assume that the flow is conical with respect to the apex (o, X, and T
functions only of y/x and z/x) and that in the transverse plane with
complex variable

£ =1+ it
T]:—L_
X cot ¢
Z
¢ = x cot ¢

the flux is solenoidal, assumptions that rigorously arewnot compatible,
as will be seen further on. The reduced velocity (1 + ®, X,T) can then
be defined from a complex potential f(£) such that
X - it =df/dg
(2)
® = cot ¢ * R(f - gdf/dxr)

The scheme of a continuous potential implies, in the transverse
plane, a flow with passage around the extremities 7 = x1 of the

ST1-d
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rectilinear cut (-1, +1) of the n-axis that represents the cross section
of the wing whose span, at the height x, is 2b = 2x cot o.

In the cut half-plane 7 > O, vhere & = relf, o varying from —n/z
to n/2, the potential in question f(&) and the reduced velocity are

given by
£() = -1 482 -1 tan a
x - it = - 1(5/1/52 - 1) tan a
@ = g(i/-\/gz - 1) tan o cot@

The lower and upper surfaces of the wing, indicated by e and r, are

respectively defined by 0= nei <1, lei = O+, and the reduced velocities
there take the values

tan a cot @

D = Jei
el ,————-1 ~ 2

with

£l

1]

Jei

From this it follows that on the plan form of the wing the tangent
to the wall streamline of the upper or lower surface is inclined to the
x-axis by an angle B (see fig. &), so that

Xei _ il |
L+ ®i o g+ Jei V1 - 1% cot a

On the upper surface the wall streamlines, or the limit lines of
the flow, start out orthogonal to the leading edge and flow toward in-
finity downstream, becoming asymptotically parallel to the x-axis. Om

tan Bei =




the lower surface, however, all the limit lines start out from the apex

O. ©Some strike the leading edge orthogonally, and others flow toward
infinity downstream becoming asymptotically parallel to the x-axis. These
two categories separate along a rectilinear border inclined to the x-axis
by the angle 7 so that tan By = y/k = 1 cot ¢; that is,

2
2 tan a
tan By = cot ¢ AJl -( sin 2@)

This line of division of the wall flux on the lower surface does not
exist; therefore (tan By = 0) unless a is sufficiently small so that
tan o remains less than (sin 2¢)/2, a limit that attains its maximum
for ¢ = 450, the intermediate case where the strong sweepbacks (¢ > 45°)
and the small sweepbacks (¢ < 45°) meet. Tne large angles of attack are
of course here out of the question because the theories of lift and pres-
sure distribution over the wings envisage only sufficiently small angles
of attack.

GTT-2

In any case, the rolling up of the wall lines of the lower surface
at the leading edge corresponds to a flowing around the leading edge by
the adjacent fluid orthogonally to the leading edge and with an infinite
velocity; hence with an infinite negative pressure.

In this scheme the continuous potential therefore implies that
around the leading edge and in a plane locally perpendicular to it the
irrotational flow of the incompressible and perfect fluid is analogous
to that of a plane stream flowing around the edge of a thin plane under
nonzero angle of attack. Hence there are again obtained the singularities
or 'physical aberrations' of the theory of the rectilinear wing profile
and the necessity of a theoretical suction effect on the leading edge;
whereas in reality a detachment or separation of the flow would take
place along this leading edge.

After reattaching on the upper surface the flux that rolls up from
the lower surface by flowing around orthogonally to the leading edge
would embody a practically stationary eddy zone along this edge, a zone
that would thus constitute a vortex roll along the leading edge on the
upper surface., It is to such a roll that the British term 'bubble'
would in this case appear to correspond.
Figure 3 briefly represents these characteristics of the flow .

envisaged.

APICAL VORTICES AND TRUMPET-SHAPED VORTEX SHEET

The preceding scheme of the continuous potential has been envisaged
above because it is classical and in order to bring out the fundamental




E-115

features, which are very simple. But it does not correspond to reality
except perhaps for very small angles of attack, a case for which it may
even be doubted whether it is of sufficient interest to consider. We
shall therefore preferably seek a scheme of a greater validity.

For a plane thin delta wing with sufficiently sharp leading edges,
the flow around the anterior part of the wing, the immediate neighborhood
of the apex being however probably excepted, is very similar to the flow
relative to the indefinitely extended delta wing.

At the O.N.E.R.A. the great number of wind-tunnel tests that have
been conducted in 1350-51 on wings with strong sweepback and with plan form
more or less similar to the delta have brought into evidence the formation
of vortex zones developing above the wing and starting from the apex,
zones rather clearly characterized as soon as the angle of attack reaches
6° to 9° approximately for backsweep angles above 45°.

In 1951-52, and as I have pointed out asbove, I made considerable ef-
fort to visualize by various means the flows in gquestion, in air and in
water. Apart from the particular phenomena that appear near the points
or marginal extremities of these wings and in certain regions of the
trailing edge, the system of vortices of the upper surface appeared, for
several observers, to consist of two symmetrical vortices, issuing ap-
proximately from the apex and forming, above the upper surface, a V
situated in a plane less inclined to that of the wing than the velocity
at infinity and less open than the V formed by the rectilinear leading
edges.

Remarking that these vortices can only be fed and strengthened pro-
gressively by the ambient flow, I derived from the entire series of tests
the schematization of the flow in question by two trumpet-shaped sheets
according to the scheme of figure 4.

Some recent publications (ref. 2) use schemes that appear to present
a rather striking analogy with that of my 'trumpet vortex sheets.’' I
ought therefore to mention, as regards the question of priority, that it
was in 1952 that I set forth this conception in the following terms
(ref. 3): ™"The two principal apical vortices appear to me to arise, for
each half wing, from the rolling up of a vortex sheet detaching from the
upper surface of the wing into a 'trumpet,' approximately orthogonally
to the surface and along an almost straight line starting from the apex,
a line which is more or less near the geometric leading edge and consti-
tuting the trace on the upper surface of a vortical ‘'bulkhead' between
the two flows of the upper and lower surfaces."

The motion of these flows was described as follows: The upper-
surface flow passing above the apex of the 'raised arrow' which consti-
tutes the wing studied, warps laterally over the back of the wing in



passing along the streams, likewise deviated laterally by the sweepback, .
the flow of the lower surface causing these streams to roll up toward the
upper surface in flowing around the leading edge. -

The distance apart between the line of detachment (or separation)
seen above, or the starting-out line of the trumpet sheet, and the geo-
metric line constituted by the leading edge is a function of the radius
of curvature of the profile at this leading edge. In particular, this
distance decreases as the radius of curvature decreases (fig. 5), and it
tends to zero when the widg profile thins down to a line, the leading
edge becoming sharp and preferably tapered.

STT-Z

This conception has recently been evoked in several publications,
notably in La Recherche A&ronautique by R. Legendre (ref. 4) and by
H. Werle (ref. 5). An almost identical conception has been adopted by
C. E. Brown and W. H. Michael in a very interesting paper (ref. 6), in
referring to the work of R. Legendre, but without mentioning the origin
of my scheme of a trumpet sheet.

In order to illustrate what was said above and as a simple example,
figure 6 presents the visualization by milk filaments of the flow on the
lower surface (o = 20°) and on the upper surface (a = 11°) of a plane,
thin, delta wing (¢ = 60°) with sharp leading edge. The dividing of the .
wall lines on the lower surface and the rolling up of the trumpet sheet
on the upper surface are particularly recognizable in these two pictures.

PSEUDO CROSSFLOW
Let us consider the tangent lines in a transverse plane Xx = constant
with the velocity components situated in this plane. They are usually
treated as streamlines of a crossflow. In fact it is a question of a

pseudo crossflow, in the sense that the flux is not solenoidal.

In fact, in an incompressible fluid, as is here envisaged, the di-
vergence of the transverse velocity is not zero, since we have

v /Qy + dw/dz = - du/dx

and Bu/Bx cannot be identically zero in the assumption of conicity. -

Let us verify this by computing Ju/ox.
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We shall use the notations previously defined:
u/Vy cos a =1 + &(n,t)
v/VO cos a = X(Tl;‘r)

w/V, cos a = t(n,¢8)

—
T x cot @

=
i

_
T x cot @

v
i

We have, in the entire irrotational flux (i.e., outside the vortex sheets
or concentrated vortices)

Vo cos a cot @
polmeee o ) o

an expression in which it is seen that the second member cannot be gener-
ally and throughout nonzero, nor even necessarily negligible in the ap-
proximate theories.

This second term, compared with the divergence of the transverse
velocity Ov/dy + du/dz is of the order of cotZg, so that it approaches
more nearly zero as @ approaches n/z.

From this it may also be concluded that in an incompressible fluid
the pseudo crossflow requires a distribution, in its plane, of sources
and sinks. In a certain approximate way it can be imagined that sources
and sinks are everywhere negligible and this is the way, in fact, that
has up to now been followed by most authors.

For my part, and as I have expressed it in 1953 at GBttingen, at
the annual meeting in this town of the Wissenschaftliche Gesellschaft
flir Luftfahrt, I consider on the contrary that a more acceptable scheme
of a pseudo crossflow should involve some distribution, at least concen-
trated, of sources and sinks. In my communication of that time, which
could not be published for incidental reasons, I had schematized this




distribution by combining two sinks with the two underside vortices and
by adding a compensating source situated in the plane of symmetry z,x
of the flow.

It can be considered that sources (or sinks), which correspond to
the fact that 8u/6x is not rigorously zero in the entire transverse
plane, are throughout negligible, or that their over-all effect, even in
the neighborhood of the wing, is equivalent to that of a certain distri-
bution of sources (or sinks) concentrated at certain points or on certain
lines. In any case, if one assumes the existence of a sheet, conical
because of the conical affinity assumed for the entire flow, of free vor-
tices, it will be shown below that the section of such a sheet in the
transverse plane { should be represented by a line of vortex sinks (or
sources).

Here we may remark only that the rolling up, so clearly revealed by
experiment, of the lower-surface flow along the sharp leading edge which
we assume, necessitates in the plane & of the pseudo crossflow the
existence of a border line (L) passing at a distance from the leading
edge and ending on the upper surface, or on the positive part of the
{-axis, and a stagnation point A. (fig. 7).

The area V comprised between the 7m-axis and the line (L), on the
side §{>0, is fed by the 'strait' bounded by the points A; and A}
of the n-axis, and receives an effective amount that should then be ab-
sorbed by the sinks, distributed or concentrated, in the area V. In com-
pensation of these sinks it is necessary to conceive in the plane ¢
and outside the area V the existence of equivalent sources, distributed
or concentrated. In fact, when one is concerned especially with evaluat-
ing with a suitable approximation the velocities and pressures on the
wing and in its neighborhood it is not excluded in advance that the com-
pensating sources in guestion are transferred to infinity, the regularity
of the potential and of the reduced velocity then being given up.

Moreover, as will be seen, the trumpet sheet and the conical distri-
bution of velocity that it implies necessarily associate surface sources
or sinks with the surface vortices that constitute the sheet.

EQUATION OF THE TRUMPET VORTEX SHEET

In the plane & (fig. 8) and over the cross section of the sheet
emanating from the leading edge to the right Ay (7 = +1), we denote by
s the curvilinear abscissa of the current point (M starting from Ay)
and by $ and T two axes oriented along the directed tangent and fol-

lowing the normal to the curvilinear section in question, the plane (s,n)
being itself oriented in the same sense as the plane (n,t).

-

SIT-d
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We denote with indices e and i the two faces of the sheet that
prolong the upper surface and lower surface of the wing and put at the
current point M of the sheet:

G(s) = ¥ - ¥4 w

G'(s) =dG/ds = vgg - vgy > (4)

8(s) = Vne = Vng J

Vg and V, denoting the components along the s- and n-axes of the re-
duced velocity (x,t), itself derived from the velocity potential $(n,t).

According to this definition, for a positive element ds of the
section of the sheet, (-G' ds) represents the direct circulation about the
element ds, and (5 ds) represents the volume of fluid emitted alge-
braically by the element ds of a conical segment of the sheet whose
height along the x-axis is equal to unity. We denote finally by rg and
rp the components of the radius-vector M along the s- and n-axes.

A simple calculation shows that the condition of tangency of the
velocity to the sheet, on its two faces, is given by the double relation

(vplei = (L + @gy)ry cot @ (5)

Taking (2) and (4) into account we have
Be - @f = [(‘Pe - &3) - (vgo = Vgy)rs - (Vp, - Vni)rrJCOt ® |
= (G - G'rs) cot ¢ - &rp cot @

whence there is derived from (5)

(6)
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We express the fact that the pressure is continuous across the sheet
(pe = pi) by the Bernoulli law:

(l + ‘T))<(I)e - (T)]_) + vs(vse - vsi) + Vn(vne - Vni) =0

a relation that is finally put into the form

v_(r2 + tan ¢) - (® + tan ¢)r
s s (
G -G =0 7)
Vgrg - (@ + tan @)
with
¢ = +G/2
Vg = Vg, + G'/2

2 =pa 2
ré =rg + rg

Equation (7) of our trumpet sheet is an integral-differential equa-
tion of a particular type and not classical as has hitherto been en-
countered. In considering for example G(s) as the unknown function it
enters through itself, its derivative, and integrals of the second order
and of the first order expressing &;(s) and vSi(s) in terms of G'(s)

and r(s).

Another unknown is the "shape" of the sheet; that is, the functions
rg;(s) and rp(s) or, if one prefers, the function ¢(n) which defines it
in the £ -plane. Besides equation (7) expressing the continuity of the
pressure across the trumpet sheet, there are available of course the two
equations (5) expressing the tangency of the flow of the upper and lower
(prolonged) surfaces of this sheet. If one of these equations is regarded
as defining by (4) the function &(s), itself regarded as known from G(s)
and £(n) - or rg(s) and r,(s), which follows from ¢(n) - there is
added to (7) only the remaining single equation (5), which is sufficient
to determine the two unknown functions G(s) and ¢(n) under the condi-
tion that the sources distributed in the &-plane outside the sheet are
regarded as negligible, and hence that the totality of the compensating
sources of the vortex sinks of the trumpet sheet are reduced to a single
source, necessarily transferred to infinity. Here the sinks and compen-
sating sources are each considered in the algebraic sense. Equation (5)
can then be written

vpi = (1 + &pi)ry cot ¢ = [1 + (®; - vgirg - Vpirplcot @]rn cot ¢

STT-&
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Not to prolong the discussion unduly, I shall not here discuss the
question, evidently an essential one, of knowing whether the solution of
the complete equation (7) exists and whether it is unique, taking account
of the fact that the flow becomes singular at infinity to which are trans-
ferred the compensating sources of the flow quantity fictitiously absorbed
in the &-plane by the trumpet sheets.

I shall only remark that if one follows continuously the trace of
the sheet in the E-plane starting from the leading edge Ay, for a wing
at positive angle of attack: G(s) constantly decreases but remains posi-
tive up to the crossing of the free edge of the sheet; G'(s) is always
negative, and at first small; rg(s), at first positive, vanishes very
quickly - for the sheet is folded on itself over a very short space -
then becomes negative; rs changes moreover in sign each time that the
radius vector OM Dbecomes again normal to the trace of the sheet, that
is, after each rotation of 180° of the directed tangent § to this trace.

Hence, at least for the imitial portion of the sheet enclosed be-
tween A; and the tangent most to the left emanating from the origin O
of the plane & (see fig. 8), the factor (G - G'rg) of & 1is certainly
positive; that is, & has the sign of ry, and is therefore negative.
This means that this segment of the sheet at least is effectively repre-
sented, in a necessary manner, by a vortex-sink distribution.

If the sheet is further folded (i.e., if the rolling up into a
trumpet is continued), the preceding character can reverse itself and this
can be the case each time that the sign of rp, or that of (G - G'rg),
reverses., The tcotality of symmetric sheets, of course, relative to the
two leading edges, and the finite area V of figure 7 should be equivalent
to a sink absorbing the quantity that crosses the straits such as AlAi'

POSSIBLE FORM OF EDGE OF TRUMPET-SHAPED SHEET

The assumed conicity - an assumption that could perfectly well be
dropped - excludes the indefinite rolling up of the sheet on itself,
since this arrangment would have to appear from the apex on.

We assume therefore that the rolling up is limited; that is, that
the trumpet sheet presents a marginal edge, represented by a point Bj
of the E-plane (fig. 9) for the sheet of the right, emanating from the
leading edge A;. This sheet is then a conical fluid surface A;B; at
a pressure equal on its two faces at each point prolonging the surface
of the wing and whose marginal edge By 1is substituted in some way for
the leading edge Aj of the plane wing - extra slender and with sharp

edges - here envisaged,
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Since this sheet is formed to avoid the direct flowing around Aj
that would imply flow with continuous potential, it must be assumed, on

the contrary, that the flow passes around the marginal border By of -
this sheet. It will be noted incidentally that if it were not so, G(s)
and G' = dG/ds would become zero at Bl, where one would then have zero

intensity at the same time for the circulation and for the amount of flow
through the trumpet-sheet surfaces.

The flow around- By by the pseudo crossflow is moreover evidenced
by experience, which is here, according to the saying of Pascal, "the
master whom we must follow."

STT-4

It is not possible however to neglect the viscosity at the point B3
nor in its neighborhood because it alone prevents the velocity from
growing infinitely there, as would be the case for a perfect fluid flow-
ing around the edge B of our schematic sheet.

On account of the viscosity there is formed at By a conical 'roll!
progressively and continuously fed by the vortical strips that constitute .
the sheet and that wind over this sheet from the leading edge Aj;
becoming finally, and sufficiently rapidly, oriented along the axis of
the marginal roll when they reach it (see fig. 9). .

In the case, depending on the angle of attack a, where the rolling-
up angle of the sheet - total angle of rotation, in the &-plane, of the
directed tangent & along the trace of the sheet - is less than =, the
velocity lines of the pseudo crossflow are presented as schematized in
figure 10, where the stagnation point Ae of figure 7 has been hypo-
thetically placed on the positive part of the {-axis.

Let us consider this conception of the marginal roll of the trumpet
sheet. It is a vortical zone where the viscosity of the real fluid,
which cannot be neglected in this zone with very large velocity gradient,
determines the carrying along by this roll of the fluid layers that come
to pass around it. This passage around develops continuocusly as the dis-
tance from the apex increases, constantly thickening the vortical core,
whose conical shape matches that of the trumpet sheet, according to our
fundamental hypothesis of the conical affinity from the apex on, or
conicity, for the entire flow.

The formation of the marginal roll can be represented, neglecting the -
viscosity, by the picture of figure 11. The vortical core (hatched area)
absorbs, at its boundary, the discharge of the pseudo crossflow that has
reached the strait AiA{ and that has not been absorbed through the
trace AB]{ (in place of A;By) of the trumpet sheet. One can even
imagine that this core is with constant curl according to a conception
recently developed by R. Legendre for a cylindrical roll (bubble) of the
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leading edge of a rectangular wing. We emphasize, at any rate, that, as
the distance from the apex increases, the circulation of the marginal
roll and its volumetric flow rate increase proportionally to the ab-
scissa  x, the first by the constant bringing up of strips of the trumpet-
shaped vortex sheet (of reduced section emanating from A, but limited
at Bi) and the second by the absorption of the flow through the lateral

surface of the roll (according to the sink effect on the contour of the
core in the &-plane).

The presence of this roll, its progressive development, its stability
connected with that of the vortices in the interior of a fluid with negli-
gible viscosity (outside these vortices) are very well corroborated by
experience. In this way should be explained moreover the twists with
multiple turns observed on visualized flow filaments and near the marginal
rolls in a trumpet vortex sheet.

The same explanation applies in my opinion to the formation of the
boundary vortices of rectangular wings or wings with very small sweepback
and with almost elliptical 1lift distribution. At the marginal extremity
of these wings, and starting from the leading edge itself, if it incurvates
rapidly downstream in the marginal zone, a trumpet sheet is formed that
produces its own marginal roll, and it is the latter, very concentrated
and very durable, that constitutes the boundary vortex of the wing, in
the usual sense.

PRACTICAL SCHEME OF FLOW

The rather difficult question remains to define from the foregoing
(which is in direct accord with experience) a scheme such that it is
practical; that is, such that it furnishes a sufficiently good approxima-
tion of the distribution of the velocities and pressures on and around
the wing and that sufficiently simplifies the computations.

I have dwelt previously on the 'rational' conditiomns to which my con-
ception of the trumpet-shaped sheet must restrict 1ltself in order that
the laws of the mechanics of fluids may be obeyed, with account taken of
the intervention of viscosity both for explaining the separation of this
sheet from the leading edge if it is sharp, or from a neighboring line
if it is more or less rounded, and for explaining the formation of a vor-
tical roll at the boundary of the sheet.

Among these rational conditions, there enter notably the pressure
equilibrium at every point of the sheet and over its two faces, and a
finite difference of the orientation presented at the sharp leading edge
of a slender wing, by the velocity of the flow at the upper and lover
surfaces.
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I have thus emphasized the necessary theoretical connection of sur-
face sinks (or sources) with the surface vortices of the trumpet sheet
under the assumed hypothesis of conicity, and the approximate character
of the concomitant hypothesis of solenocidal flux for the pseudo crossflow
outside the preceding singularities. In recent times I have, with the
collaboration of P. Duban, made several attempts at maximum simplification
of the flow scheme. All those attempts where the trumpet sheet was only
fragmentarily represented have furnished results which, while acceptable
from several interesting points of view, involve some unsatisfactory
local defect.

Another attempt, at present in the course of calculation, calls for
a trumpet sheet with continuous vortex distribution from Aj; to Bj,
completed at By by a concentrated vortex sink (fig. 12). In spite of
this forced 'stylization' of the true structure of the trumpet sheet, the
computations are more cumbersome than the preceding. The results will
be later presented if there is occasion.

In any case, the stylization (at By and Bg) of the marginal vortex
roll by a concentrated vortex sink, as I have indicated at GBttingen in
1953, appears to me to be imposed by the results of the visualization of
the real flow and by a reasonable care of simplifying the computatiouns,
it being understood that it is a question of evaluating velocities and
pressures on the wing and in its immediate neighborhood.

TEARING OF THE TRUMPET SHEET

It is evident that in reality and for a delta wing of large chord
the conical flow is only approximate and only for a limited portion of
the wing.

The viscosity exerts in fact a cumulative influence along the lead-
ing edge and from the apex, as regards the formation and separation of
the trumpet sheets. This influence causes a progressive divergence of
the real flow from the affine flow, in an approximate manner, for a per-
fect fluid. It may therefore be considered as probable that at a certain
distance from the apex the trumpet sheet, formed from this point, tears
at the leading edge and a new piece of trumpet sheet is formed from this
tearing point on, terminating in its turn in a more downstream point on
the leading edge, and so on.

Thus, several rolls, kinds of concentrated vortices, can appear
above and along a delta wing, which then roll up more or less rapidly the
one about the other.

STT-4
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The effect of the interaction of the trailing edge on the flow about
the leading edge can similarly favor the tearing of a trumpet sheet be-
fore its development reaches the boundary point of the delta wing.

Numerous observations of visualized flows conducted at the O.N.E.R.A.,
on slender delta wings and wings with strong backsweep as well as on
spindle-shaped bodies, appear to me to justify the preceding conception,
which I here restrict myself to mentioning, emphasizing the effect, evi-
dently of essential importance, of the Reynolds number relative to the
'depth' of the obstacle in the flow direction.

REFERENCES
1. La Rech. Aéro. no. 33, May-June 1953; no. 41, Sept.-Oct. 1954.
2. Kiuchemann, D.: Rep. No. AERO. 2540, British R.A.E., Apr. 1955.

3. Roy, M.: Caract2res de 1'&coulement autour d'une aile en fléche accen-
tu€e. C. R. de 1'Académie des Sci., June 23, 1952.

4. Legendre, R.: La Rech. Aéro., no. 31, 1953.

5. Werle, H.: La Rech. Aéro., no. 41, 1954, p. 19.

6. Brown, C. E., and Michael, W. H.: Jour. Aero. Sci., Oct. 1954, p. 792.
Translated by S. Reiss

National Aeronautics and
Space Administration




16

C/Y
+1
¢
-1 /
b
g

L
=

dg

o0

Fig. 1.

STT-H



17

Roll

Fig. 3.

vl

IIII

STT-E

Fig. 4.




18

_

Lower

Line of separation

Leading edge

Fig. 5.

surface (o = 20°)
Fig. 6.

—

Upper surface (a = 11°)

STIT-4




E-115

gs'l’]+ic

19



20

N

Marginal roll
_Aﬁrumpet sheet

Filament of flow

1/2 Infinite
delta wing

STi-4




21

A e(

STT-®

Fig. 10.

Qyz

e P4

Fig. 11.

Fig. 12.




